2013 Symposia on VLSI Technology and Circuits June 11th (Tuesday)

Time	Suzaku I	Suzaku II	Suzaku III	Shunju I	Shunju II			
7:30-17:00			Registration					
	8:20-11:50 Circuits Short Course		8:20-11:50 Circuits Workshop	T1 "Welcome and	d Plenary Session"			
8:30-10:05				T1-1 8:30-8:45				
				Welcome and Opening Remarks				
				T1-2 8:45-9:25 (Plenary)				
				TSMC System Scaling and Collaborative Open Innovation				
				T1-3 9:25-10:05 (Plenary)				
				Qualcomm Technologies System Design Considerations for Next Generation Wireless Mobile Devices				
				T2: Highlight				
	8:20-11:50 Circuits Short Course		8:20-11:50 Circuits Workshop					
			6.20-11.50 Circuits Workshop	Intel A 22nm High Performance Embedded DRAM SoCTechnology Featuring Tri-Gate Transistors and MIMCAP COB				
				T2-2 10:55-11:20				
10:30-12:10				IBM High-Performance Si1-xGex Channel on Insulator Trigate PFETs Featuring an Implant-Free Process and Research Aggressively- Scaled Fin and Gate Dimensions,				
				T2-3 11:20-11:45				
				GLOBALFO First Demonstration of Strained Ge-in-STI IFQW pFETs Featuring Raised SiGe75% S/D, Replacement Metal UNDRIES Gate and Germanided Local Interconnects				
				T2-4 11:45-12:10				
				Panasonic Extramoly High Saturation of 2500 electrons/um	ors with			
					T4: (ES) 3D System and Packaging			
				T3-1 13:30-13:55	T4-1 13:30-13:55 (Invited)			
				The Univ. Examination of Physical Origins Limiting Effective	Manufacturability Optimization and Design			
				of Tokyo Atomic Deuterium Annealing	Integrated Circuits			
				<u>T3-2 13:55-14:20</u>	T4-2 13:55-14:20 (Invited)			
				The Univ. Enhancement of High-Ns Electron Mobility in of Tokyo Sub-nm EOT Ge n-MOSFETs	IBM Scaling Challenges of Packaging in the Era of Research Big Data			
13:30-15:35				T3-3 14:20-14:45	T4-3 14:20-14:45			
				GNC Strained Ge Nanowire pMOSFETs by Using Plasma Oxidized	TSMC Performance TSV Interconnects for 28nm 3D-IC			
				GeOx Inter-Layer for Gate Stack	Integration			
				Stanford Fabrication of GeSn-On-Insulator (GSOI) to Enable	Seoul A New Guard-Ring Technique to Reduce Coupling			
				Univ. Monolithic 3D Co-Integration of Logic and Photonics	National Noise from Through Silicon Via (TSV) Utilizing Univ. Inversion Charge Induced by Interface Charge			
	13:40-17:00 Circuits Short Course		13:40-17:00 Circuits Workshop	T3-5 15:10-15:35	T4-5 15:10-15:35			
				Univ. of Around Nanowire PFETs Enabled by a Novel Top- Singapore Down Nanowire Formation Technology	TSMC High-Performance Inductors for Integrated Fan- Out Wafer Level Packaging (InFO-WLP)			
				T5: III-V MOSFET	T6: (FS) 3D and Emerging Memory			
				T5-1 15:50-16:15	T6-1 15:50-16:15 (Invited)			
				The Univ. Strained Extremely-Thin Body In _{0.53} Ga _{0.47} As-On- of Tokyo Insulator MOSFETs on Si Substrates	Toshiba Bit Cost Scalable (BiCS) Technology for Future Ultra High Density Storage Memories			
				T5-2 16:15-16:40	T6-2 16:15-16:40 (Invited) Comprehensive Understanding of Conductive Filament			
15:50-17:30				The Univ. Insulator MOSFETs on Si with Ni-InGaAs Metal S/D by Contact Resistance Reduction Technology	Panasonic Characteristics and Retention Properties for Highly Reliable ReRAM			
				<u>T5-3 16:40-17:05</u>	T6-3 16:40-17:05 Enhancement of Switching Margin by Utilizing Superior			
				Stanford Optimal Device Architecture and Hetero- Univ. Integration Scheme for III-V CMOS	Samsung Pinned Layer Stability for Sub-20nm Perpendicular STT-MRAM			
		l		T5-4 17:05-17:30	T6-4 17:05-17:30			
				GNC CMOS Inverters with High Electron and Hole Mobility Using Staked 3D Integration	IBM Almaden Recovery Dynamics and Fast (Sub-50ns) Read Operation Research with Access Devices for 3D Crosspoint Memory Based on Center Mixed-Ionic-Electronic-Conduction (MIEC)			
	Joint Rump Se	ssion	1	Technology Rump Session 1	Technology Rump Session 2			
20:00-22:00	SOC vs. 3D IC in the More	-than-Moore Era		Low Voltage - How Low Can We Go?	Novel Hierarchy in Emerging Memory			

2013 Symposia on VLSI Technology and Circuits June 12th (Wednesday)

Time		Suzaku I	Suzaku II		Suzaku III		Shunju I	Shunju II		
7:30-17:00	Registration									
							C1 "Welcome Session"			
			<u>C1-1 8:30-8:45</u>							
8:30-9:50				Welcome and Opening Remarks						
			"Executive Panel "							
						C1-2 0.40-9.30				
		C2(JES): 2D Integrated Circ	wite & Applications		C2: Imagara		TZ: Advensed EinEET	-		
	C3-1	3-1 10:30-10:55			10:30-10:55	T7-1	10:30-10:55	T8-1	10:30-10:55	
	TSMC	An Extra Low-Power 1Tbit/s Bandwidth PLL/DI for 2.5D CoWoS Application	LL-Less eDRAM PHY Using 0.3V Low-Swing IO	Aptina Japan	A 1-inch Optical Format, 14.2M-Pixel, 80fps CMOS Image Sensor with a Pipelined Pixel Reset and Readout Operation	National Univ. of Singapore	A New Expandible ZnS-SiO2 Liner Stressor for N-Channel FinFETs	imec	Modeling RRAM Set/Reset Statistics Resulting in Guidelines for Optimized Operation	
	C3-2	2 10:55-11:20			10:55-11:20	T7-2	10:55-11:20	T8-2	10:55-11:20	
	TSMC	IC 3D IC Heterogeneous Integration of GPS RF Receiver, Baseband, and DRAM on CoWoS with System BIST Solution			A 5.9µm-Pixel 2D/3D Image Sensor with Background Suppression over 100klx	Samsung	3 Dimensional Scaling Extensibility on Epitaxial Source Drain Strain Technology toward Fin FET and Beyond	Macronix International	A Novel High Performance WO_X ReRAM Based on Thermally-Induced SET Operation	
10.30-12.35	C3-3	3 11:20-11:45			11:20-11:45	T7-3	11:20-11:45	T8-3	11:20-11:45	
10.50-12.55	Macronix International	nix 3D Stackable Vertical-Gate BE-SONOS NAND Flash with Layer-Aware Program-and-Read tional Schemes and Wave-Propagation Fail-Bit-Detection against Cross-Layer Process Variations		Panasonic	An Ultra-Low Noise Photoconductive Film Image Sensor with a High-Speed Column Feedback Amplifier Noise Canceller	SEMATECH	Effects of Layout and Process Parameters on Device/Circuit Performance and Variability for 10nm Node FinFET Technology	Fudan Univ.	Reliability Significant Improvement of Resistive Switching Memory by Dynamic Self-Adaptive Write Method	
	C3-4	11:45-12:10			11:45-12:10	T7-4	11:45-12:10	T8-4	11:45-12:10	
	CEA, Leti	eti A 0.9 pJ/bit, 12.8 GByte/s WidelO Memory Interface in a 3D-IC NoC-Based MPSoC		Columbia Univ.	A 100-fps Fluorescence Lifetime Imager in Standard 0.13-µm CMOS	imec	Quantum Well Band Calculations and Their Impact on Device Isolation and Work Function Requirements for SiGe and III/V Strained Heterostructure FinFETs	Macronix International	A Novel Conducting Bridge Resistive Memory Using a Semiconducting Dynamic E-Field Moderating Layer	
	C3-5	12:10-12:35			12:10-12:35	T7-5	12:10-12:35	T8-5	12:10-12:35	
	ASET	Scalable 3D-FPGA Using Wafer-to-Wafer TSV Interconnect of 15 Tbps/W, 3.3 Tbps/mm ²		Univ. of Texas	820-GHz Imaging Array Using Diode-Connected NMOS Transistors in 130-nm CMOS	GNC	Superior Cut-Off Characteristics of Lg=40nm W _{fin} =7nm Poly Ge Junctionless Tri-Gate FET for Stacked 3D Circuits Integration	Stanford Univ.	Dopant Selection Rules for Extrinsic Tunability of ${\rm HfO_x}$ RRAM Characteristics: A Systematic Study	
		C5: Delta-Sigma M	lodulators	C4: (Circuits for Biomedical Applications		JJFS1: Design Enablement		T9: PCRAM and MRAM	
	C5-1	13:55-14:20		C4-1	13:55-14:20	JJ1-1	13:55-14:20 (Invited)	T9-1	13:55-14:20 Charge Injection Super Lattice Phase Change Memory	
	MediaTek	A 75.1dB SNDR 840MS/s CT ΔΣ Modulator wit 55nm CMOS	th 30MHz Bandwidth and 46.4fJ/conv FOM in	Hong Kong Univ. of Sci. and Tech.	A 200-Channel 10µW 0.04mm ² Dual-Mode Acquisition IC for High Density MEA	TSMC	Enabling Circuit Design Using FinFETs through Close Ecosystem Collaboration	LEAP	for Low Power and High Density Storage Device Applications	
	C5-2	14:20-14:45		C4-2	14:20-14:45	JJ1-2	14:20-14:45	<u>T9-2</u>	14:20-14:45	
	Univ. of Michigan	ff A 69dB SNDR, 25MHz BW, 800MS/s Continuous-Time Bandpass ΔΣ ADC Using DAC Duty an Cycle Control for Low Power and Reconfigurability		Case Western Reserve Univ.	A Neurochemical Pattern Generator Soc with Switched- Electrode Management for Single-Chip Electrical Stimulation and 9.3µW, 78pA _{ms} , 400V/s FSCV Sensing	Intel	A 3.6GB/s 1.3mW 400mV 0.051mm ² Near-Threshold Voltage Resilient Router in 22nm Tri-Gate CMOS	Macronix International	A Scalable Volume-Confined Phase Change Memory Using Physical Vapor Deposition	
13:55-16:00	C5-3	14:45-15:10		C4-3	14:45-15:10	JJ1-3	14:45-15:10	T9-3	14:45-15:10	
	Intel	A 66dB SNDR 15MHz BW SAR Assisted $\Delta\Sigma$ A	DC in 22nm Tri-Gate CMOS	Chiao Tung Univ.	A 28.6µW Mixed-Signal Processor for Epileptic Seizure Detection	imec	Layout-Induced Stress Effects in 14nm & 10nm FinFETs and Their Impact on Performance	LEAP	Novel Highly Scalable Multi-Level Cell for STT- MRAM with Stacked Perpendicular MTJs	
	C5-4	15:10-15:35		C4-4	15:10-15:35	JJ1-4	15:10-15:35	T9-4	15:10-15:35	
	National Taiwan Univ.	A 379nW 58.5dB SNDR VCO-Based $\Delta\Sigma$ Modu	lator for Bio-Potential Monitoring	ETH Zurich	with 26'400 Electrodes for Recording and Stimulation of Electro- Active Cells In-Vitro	IBM Micro- electronics	Process and Local Layout Effect Interaction on a High Performance Planar 20nm CMOS	LEAP	Counter Bias Magnetic Field Layer for Suppressing a Stray-Field in Highly Scalable STT-MRAM	
	C5-5	15:35-16:00		C4-5	15:35-16:00	JJ1-5	15:35-16:00	T9-5	15:35-16:00	
	Oregon State Univ.	A 4.1mW, 12-bit ENOB, 5MHz BW, VCO-Base Background Calibration in 90nm CMOS	ed ADC with On-Chip Deterministic Digital	Univ. of Sci. and Tech.	A 51fA/HZ ^{0.5} Low Power Heterodyne Impedance Analyzer for Electrochemical Impedance Spectroscopy	STARC	CPU Using High Voltage Clock Distribution (HVCD) and Adaptive Frequency Scaling (AFS) with 40nm CMOS	Renesas Electronics	Perpendicularly Magnetized CoFeB/MgO Magnetic Tunnel Junction and Underlying Hard Magnets	
		T10: More than	Moore	C6: App	lication Specific Wireless Transceivers		(break)		T11: NAND and 3D NVM	
	T10-1	16:10-16:35		C6-1	16:10-16:35	JJ1-6 Intel Mobile	16:10-16:35 (Invited)	T11-1	16:10-16:35 A Novel Bit Alterable 3D NAND Flash Lister Junction	
	Univ. of California	Benefits of Segmented Si/SiGe p-Channel MO	SFETs forAnalog/RF Applications	Broadcom	A 2dB NF Receiver with 10mA Battery Current Suitable for Coexistence Applications	Communicati ons Group	Design for ESD Protection at Its Limits	Macronix International	Free P-Channel Device with Band-to-Band Tunneling Induced Hot-Electron Programming	
	T10-2	16:35-17:00		C6-2	16:35-17:00	JJ1-7	16:35-17:00	T11-2	16:35-17:00	
16:10-17:50	Toshiba	Scaling Strategy for Low Power RF Application (DWF) MOSFETs Utilizing Self-Aligned Integra	ns with Multi Gate Oxide Dual Work Function Ition Scheme	Mstar Semi- conductor	A Low-Cost SAW-Less GSWGPRS SoC with Integrated Connectivity and 32-kHz Crystal Removal in 55nm	Univ. of Tsukuba	Application of Low-Noise TIA ICs for Novel Sensing of MOSFET Noise up to the GHz Region	Seoul National Univ	A New Read Method Suppressing Effect of Random Telegraph Noise in NAND Flash Memory by Using V Hysteretic Characteristic	
	T10-3	17:00-17:25		C6-3	17:00-17:25	JJ1-8	17:00-17:25	T11-3	17:00-17:25	
	Samsung	nsung Time of Flight Image Sensor with 7µm Pixel and 640x480 Resolution		Panasonic	A 1.15V Low Power Mobile ISDB-Tsb/Tmm/T and DVB-T Tuner SoC in 40nm CMOS	ST Micro- electronics	FIRST Demonstration of a Full 28nm High-k/Metal Gate Circuit Transfer from Bulk to UTBB FDSOI Technology through Hybrid Integration	Macronix International	Study or the Interference and Disturb Mechanisms of Split- Page 3D Vertical Gate (VG) NAND Flash and Optimized Programming Algorithms for Multi-Level Cell (MLC) Storage	
	T10-4	17:25-17:50		C6-4	17:25-17:50	JJ1-9	17:25-17:50	T11-4	17:25-17:50	
	Univ. of California	A MEMS-Based Charge Pump		Intel	Calibrated HRM with >70dB 3 rd and 5 th Harmonic Rejection for Carrier Aggregation in 32nm CMOS	ST Micro- electronics	2.6GHz Ultra-Wide Voltage Range Energy Efficient Dual A9 in 28nm UTBB FD-SOI	Stanford Univ.	3D Vertical RRAM – Scaling Limit Analysis and Demonstration of 3D Array Operation	
19:00-21:00							Joint B	anque	it	

2013 Symposia on VLSI Technology and Circuits June 13th (Thursday)

		Suzaku I		Suzaku II		Suzaku III		Shunju I		Shunju II
8:00-17:00					Registration					
		C7 "Plenary Session"								T12: ReRAM 2
	U/-1 8:45-9:25 (Plenary)								T12-1	8:30-8:55 Understanding of the Intrinsic Characteristics
	Samsung	Perspectives on Mobile Devices and Their I	mpact on Se	emiconductor Technologies					imec	and Memory Trade-Offs of Sub-µA Filamentary RRAM Operation
	C7-2	9:25-10:05 (Plenary)							T12-2	8:55-9:20 RTN Insidet to Filamentary Instability and Disturb
	Corning	Glass for the Future: Displays and Semicon	ductors						imec	Immunity in Ultra-Low Power Switching HfO _x and AlO _x
8:30-10:10					1				T12-3	9:20-9:45
									National Chiao Tuno	Self-Rectifying Bipolar TaOx/TiO2 RRAM with Superior Endurance Over 1012 Cycles for 3D
									Univ.	High-Density Storage- Class Memory
									112-4	9:45-10:10 Multi-Layer Tunnel Barrier (Ta ₂ O ₅ /TaO ₂ /TiO ₂)
									POSTECH	Engineering for Bipolar RRAM Selector
		C8: Pipeline ADCs				T13: RTN		C9(JFS) Emerging Memories		T14: Process Technology
	C8-1	10:30-10:55			T13-1	10:30-10:55	C9-1	10:30-10:55	T14-1	10:30-10:55
	Broadcom	A 5.4GS/s 12b 500mW Pipeline ADC in 28nm CMOS			Toshiba	Experimental Study of Channel Doping Concentration Impacts on Random Telegraph Signal Noise and Successful	Watson Research	1Mb 0.41 µm ² 2T-2R Cell Nonvolatile TCAM with Two-Bit Encoding and Clocked Self-Referenced	imec	Highly Scalable Effective Work Function Engineering Approach for Multi-V _T Modulation of Planar and FinFET-
	C8-2	10:55 11:20	-		T13-2	Noise Suppression by Strain Induced Mobility Enhancement	Center	Sensing	T14 2	Based RMG High-k Last Devices for (Sub-)22nm Nodes
	Oregon	A 75.9dB-SNDR 2.96mW 29fJ/Conv-Step			113-2	Deep Understanding of AC RTN in MuGFETs through	Tohoku	Fabrication of a 99%-Energy-Less Nonvolatile Multi-		Heated Implantation with Amorphous Carbon
	State Univ.	Ringamp-Only Pipelined ADC			Beijing Univ.	New Characterization Method and Impacts on Logic Circuits	Univ.	Functional CAM Chip Using Hierarchical Power Gating for a Massively-Parallel Full-Text-Search Engine	imec	CMOS Mask for Scaled FinFETs
10:30-12:35	C8-3	11:20-11:45			T13-3	11:20-11:45	C9-3	11:20-11:45 A 250-MHz 256b-I/O 1-Mb STT-MRAM with Advanced	T14-3 GLOBAL	11:20-11:45 NFET Effective Work Function Improvement via
	Oregon State Univ	Step Time- Based Pipelined ADC			Univ. or Minnesota	Using a Ring Oscillator Based Circuit	Toshiba	Perpendicular MTJ Based Dual Cell for Nonvolatile Magnetic Caches to Reduce Active Power of Processors	FOUNDRI	Stress Memorization Technique in Replacement
	C8-4	11:45-12:10			T13-4	11:45-12:10	C9-4	11:45-12:10	T14-4	11:45-12:10
	Stanford	A 12-Bit, 200-MS/s, 11.5-mW Pipeline ADC			imec	Degradation of Time Dependent Variability Due	Tohoku	A 1.5nsec/2.1nsec Random Read/Write Cycle 1Mb STT-RAM Using 6T2MTJ Cell with Background Write	The Pennsylvani	Barrier Height Reduction to 0.15eV and Contact Resistivity Reduction to 9.1×10 ⁻⁹ Ω-cm ² Using Ultrathin TiO _{2-x}
	Univ.	Using a Pulsed Bucket Brigade Front-End				to Interface State Generation	Univ.	for Nonvolatile e-Memories	a State Univ	Interlayer between Metal and Silicon
	68-5	12:10-12:35					C9-5	12:10-12:35 Area-Efficient Embedded RRAM Macros with Sub-5ns	114-5	12:10-12:35
	Univ. of California	A 10-Bit 800-MHz 19-mW CMOS ADC					Tsing Hua	Random-Read-Access-Time Using Logic-Process Parasitic- BJT- Switch (0T1R) Cell and Read-Disturb-Free	ST Micro electronics	64nm Pitch Interconnects: Optimized for Designability, Manufacturability and Extendibility
				Luncheon Talk	ł		0	Temperature-Aware Current-Mode Read Scheme		
12:45-14:05	;		Otowa	Symbiosis with Lightning Which Is One of						
			Electric	the Most Spectacular Natural Phenomenon						
	C10 1	C10: PLL Building Blocks								
		14:20 14:45	-		C11-1	C11: Low Power Wireless	112.4	JJFS2: SRAM	T15 1	T15: Nanowire
	KANOT.	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time-			C11-1	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR	JJ2-1	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static	T15-1 ST Micro	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate
	KAIST	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65nm CMOS Using Time- Register			C11-1 imec	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS	JJ2-1 IBM SRDC	JJFS2: SRAM 14:20-14:45 (Invited) , Fully-Depleted Planar Technologies and Static ' RAM	T15-1 ST Micro electronics	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Self-Aligned Planar Double-Gate and Gate-All-Around Nanowire Transistors
	KAIST C10-2	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65nm CMOS Using Time- Register 14:45-15:10			C11-1 imec C11-2	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10	JJ2-1 IBM SRD0 JJ2-2	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20nm 0.6V 2.1uW/MHz 128kb SRAM with No Half	T15-1 ST Micro electronics T15-2	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Self-Aligned Planar Double-Gate and Gate-All-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size
14:20-16:00	KAIST C10-2 Stanford Univ	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65nm CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs			C11-1 imec C11-2 Texas Instruments	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL	JJ2-1 IBM SRD0 JJ2-2 Renesas Electronics	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20nm 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interfeave Wordline and Hierarchical Bittine Scheme	T15-1 ST Micro electronics T15-2 Toshiba	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Sef-Aigned Planar Double-Gate and Gate-All-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire MOSFETs
14:20-16:00	KAIST C10-2 Stanford Univ C10-3	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65mn CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35			C11-1 imec C11-2 Texas Instruments C11-3	C11: Low Power Wireless 14:20-14:45 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35	JJ2-1 IBM SRD0 JJ2-2 Renesas Electronics JJ2-3	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20nm 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme	T15-1 ST Micro electronics T15-2 Toshiba T15-3	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Sef-Aigned Planar Double-Gate and Gate-All-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10m Diameter Tri-Gate Nanowire MOSFETs 15:10-15:35
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65mn CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720µW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in	•		C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitter Transmitter Circuit with Nevel Feedback Source Follower Amplifier for Solar Powerd 5-mm-Cube Wireless	JJ2-1 IBM SRD0 JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20nm 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage. Hinh Speed and Low Voltage SRAMs	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Sef-Aigned Planar Double-Gate and Gate-All-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Trn-Gate Nanowire MCSFETS 15:10-16:35 Scaling of Ω-Gate SOI Nanowire N- and P-FET Down to 10mm Gate Length: Size- and Orientation-
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720JW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90m CMOS 15:35-16:00			C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem Integration Labs C11-4	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitter Transmitter Circuit with Novel Feedback Source Follower Amplifier for Solar Powered 5-mm-Cube Wireless Sensor Nodes with 1/20/ Digite Antenna 15:35-16:00	JJ2-1 IBM SRD0 JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20nm 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Sef-Aigned Planar Double-Gate and Gate-All-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10nm- Diameter Tri-Gate Nanowire MOSFETS 15:10-15:35 Scaling of 0-Gate SOI Nanowire N- and P-FET Down to 10nm Gate Length: Size- and Orientation- Dependent Strain Effects 15:35-16:00
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720jW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mr CMOS 15:35-16:00 93% Power Reduction by Automatic Self Power Gating (ASPC) and Multistage Inverter for Negative Resistance			C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem Integration Labs C11-4 Purdue Univ	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitent Transmitter Circuit with Novel Feedback Source Follower Angline for Solar Powered 5-mm-Cube Wireless Sensor Nodes with 1/20/ Bopde Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using A-00dBm Sensitivity Wireless Transceiver Using A-00dBm Sensitivity Wireless Transceiver Using	JJ2-1 IBM SRD0 JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20nm 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silicon-on-Thin-BOX (SOTB) 20Hb SRAM Down 0.37 V Ultizion	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Turc	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Self-Aigred Planar Double-Gate and Gate-Ali-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10nm- Diameter Tri-Gate Nanowire MOSFETs 15:10-15:35 Scaling of D-Gate SOI Nanowire N- and P-FET Down to 10nm Gate Length: Size- and Orientation- Dependent Strain Effects 15:36-16:00 Performance of GAA Poly-Si Nanosheet (2nm) o Channel of Juccinoless Transistors with Ideal
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ⁷ , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720jW 873MHz-1.008GHz Injection-Locked Frequency Multipler with 0.3V Supply Voltage in 90nm CMOS 15:35-16:00 93% Power Reduction by Automatic Self Power Gating (MRP) in 0.7V, 9.2JW, 33MHz Crystal Oscillator		T17: Late News Sossion	C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem Integration Labs C11-4 Purdue Univ C13-1 im	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transcelver Using Fully Digital PLL 15:10-15:35 Intermittent Transmitter Circuit with Novel Feedback Source Follower Angline for Solar Powered S-mm-Cube Wireless Sensor Nodes with 120h Digote Anterna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using Voc-PA-LNA-Switch-Modulator Co-Design for Low Power Insect- Based Wireless Sensor Networks	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20nm 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDS01 Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silicon-on-Thin-BOX (SOTB) 2Mb SRAM Down 0.37 V Utilizing Adaptive Back Bias	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tung Univ.	T15: Nanowire 14:20-14:45 Innovative Troogh-Si 3D Lithography for Ultimate Self-Aligned Planar Double-Gate and Gate-All-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10nm- Diameter Tri-Gate Nanowire MOSFETs 15:10-15:35 Scaling of 0-Gate SOI Nanowire N- and P-FET Down to 10nm Gate Length: Size- and Orientation- Dependent Strain Effects 15:35-16:00 Performance of GAA Poly-Si Nanosheet (2mm) Channel of Juncionless Transistors with Ideal Subthreshold Siope T45:E T45:E
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 15:10-15:35 A 720JW 873MHz-1.008GHz Injection-Locked Frequency Multipler with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 93% Power Reduction by Automatic Self Power Gating (ASPG) and Multistage Inverter for Negative Resistance (MINR) in 0.7V, 9.2JW, 39MHz Crystal Oscillator Clock and Frequency Generation 16:15-16:40	T17-1	T17: Late News Session 16:15-16:30	C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem Integration Lab C11-4 Purdue Univ C13: Lint C13-1	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transcelver Using Fully Digital PLL 15:10-15:35 Intermitten Transmitte Circuit with Novel Faedback Source Forser Nodes with 120A Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using A-90dBm Sensitivity Wireless Transceiver A-90dBm Sensitivity Wirelesa	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20nm 0.6V 21µW/MH2 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDS01 Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silicon-on-Thin-BOX (SOTB) 2Mb SRAM Down 0.37 V Utilizing Adaptive Back Bias (break) 16:15-16:40 (Invited)	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tung Univ.	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Self-Aligned Planar Double-Gate and Gate-Ali-Arounc Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire M- and P-FET Down to 10m Gate Length: Size- and Orientation- Dependent Strain Effects 15:35-16:00 Performance of GAA Poly-Si Nanosheet (2mm) Channel of Junctionless Transistors with Ideal Subtreshold Slope T16: Beyond CMOS 16:15-16:40
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 15:10-15:35 A 720;W 873MHz-1.008GHz Injection-Locked Frequency Multipler with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 93% Power Reduction by Automatic Self Power Gating (ASPG) and Multistage Inverter for Negative Resistance (MIRR) in 0.7V, 9.2JW, 39MHz Crystal Oscillator Clock and Frequency Generation 16:15-16:40 9 A 2.5GHz 5.4mW 1-to-2048 Digital Clock	T17-1 Univ. of Cefereic	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at VOsFETs	C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem Integration Labo C11-4 Purdue Univ C13: Linu C13-1 National Chiao Tung	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transcelver Using Fully Digital PLL 15:10-15:35 Intermittent Transmitter Circuit with Novel Feedback Source Follower Angline for Solar Powered 5-mm-Cube Wireless Sensor Nodes with 120h Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VCO-PA-LNA-Switch-Modulator Co-Design for Low Power Insect- Based Wireless Sensor Networks arr Regulators and DC-DC Converters 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silicon-on-Thin-BOX (Ultralow-Voltage Operation of Silicon-on-Thin-BOX (SOTB) 2Mb SRAM Down 0.37 V Utilizing Adaptive Back Bias 16:15-16:40 (Invited) Enhancing SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tung Univ. T16-1 GNC	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Self-Aligned Planar Double-Gate and Gate-Ali-Arounc Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire M- and P-FET Down to 10m Gate Length: Size- and Orientation- Dependent Strain Effects 15:35-16:00 Performance of GAA Poly-Si Nanosheet (2mm) (Channel of Junctionless Transistors with Ideal Subtreshold Slope T16: Beyond CMOS 16:15-16:40 Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wrapped Gate
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 15:10-15:35 A 720,W 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 93% Power Reduction by Automatic Self Power Gating (ASPG) and Multistage Inverter for Negative Resistance (MINR) in 0.7V, 9.2JW, 39MHz Crystal Oscillator Clock and Frequency Generation 16:15-16:40 9 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05	T17-1 Univ. of California T17-2	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at Vojs = 0.5 V) InAs/In ₂₃ Ga ₆₄ As Channel MOSFETs Using MOCVD Source-Drain Regrowth 16:30-16:45	C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem Integration Labor C11-4 Purdue Univ C13: Linn C13:1 National Chiao Tung Univ. C13-2	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transcelver Using Fully Digital PLL 15:10-15:35 Intermittent Transmitter Circuit with Novel Feedback Source Follows: Angline for Solar Powerd 5-mm-Cube Wireless Sensor Nodes with 120h Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VCO-PA-LNA-Switch-Modulator Co-Design for Low Power Insect- Based Wireless Sensor Networks par Regulators and DC-DC Converters 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital Low Dropour Regulator in 40m CMOS with 77% Power Supply Rejection Improvement 16:40-17-05	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silicon-on-Thin-BOX (Ultralow-Voltage Operation of Silicon-on-Thin-BOX (SOTB) 2Mb SRAM Down to 0.37 V Utilizing Adaptive Back Bias (break) 16:15-16:40 (Invited) Enhancing SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14m Node and Beyond	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tung Univ. T16-1 GNC T16-2	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Self-Aligned Planar Double-Gate and Gate-Ali-Arounc Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire M- and P-FET Down to 10m Gate Length: Size- and Orientation- Dependent Strain Effects 15:35-16:00 Performance of GAA Poly-Si Nanosheet (2mm) of channel of Juncioless Transistors with Ideal Subtreshold Slope T16: Beyond CMOS 16:15-16:40 Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wraped Gate Electrode Around Ultrathin Epitaxial Channel
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2 Seoul	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register A 0.11mm ⁷ , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720,W 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 93% Power Reduction by Automatic Self Power Gating (ASPC) and Multistage Inventer for Negative Resistance (MINR) in 0.7V, 9.2µV, 35MHz Crystal Oscillator Clock and Frequency Generation 16:15-16:40 9 A 2.5GHz 5.4mW 14o-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 1.3-mW, 1.6-GHz Digital Delay-Locked Loop with	T17-1 Univ. of California T17-2 IBM Semi	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at Vos= 0.5 V) InAs/In _{6:30} ade ₄ :As Channel MS/FTs Using MOCVD Source-Drain Regrowth 16:30-16:45 Experimental Analysis and Modeling of Self Heating	C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem Integration Lab C11-4 Purdue Univ C13-1 National C13-1 Chiao Tung Univ. C13-2 KAIST	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transcelver Using Fully Digital PLL 15:10-15:35 Intermittent Transmitte Circuit with Nevel Feedback Source Follower Angline for Solar Powered S-mm-Cobe Wireless Sensor Nodes win 120b Digote Antema 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VCO-PA-LNA-Switch-Modulator Co-Design for Low Power Insect- Based Wireless Sensor Networks ear Regulators and DC-DC Converters 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital Low Dropour Regulator in 40m CMOS with 77% Power Supply Rejection Improvement 16:40-17:05 High-Gain Wirde-Bandwidth Capactor-Lass Low-	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-6	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silcon-on-Thin-BOX (SOTB) 2Mb SRAM Down 0.37 V Utilizing Adaptive Back Bias (SoTB) 2Mb SRAM Down 0.37 V Utilizing Adaptive Back Bias 16:15-16:40 (Invited) Enhancing SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:05 Dual-V ₄₂ BT-Bitcell SRAM Array in 22nm Tri-Gate DMDS be Streame Stillione Marine Middle	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tung Unix. T16-1 GNC T16-2 Panasoni	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Arouno Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10m- Diameter Tri-Gate Nanowire M- and P-FET Down to 10m Gate Length: Size- and Orientation- Dependent Size. 15:10-15:35 Scaling of 0-Gate SOI Nanowire M- and P-FET Down to 10m Gate Length: Size- and Orientation- Dependent Size. 15:35-16:00 Performance of GAA Poly-Si Nanosheet (2mn) g channel of Juncioness Transistors with Ideal Subtreshol Siope T16: Beyond CMOS 16:15-16:40 Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wrapped Gate Electrode Around Ultrathin Epitaxial Channel 16:40-17:05 Neural Network Based on a Three-Terminal Forecolectric Meoritors to Fisched On Chine Bettern
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2 Seoul National Univ	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720JW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 93% Fower Reduction by Automatic Self Power Gating (ASPC) and Multistage Inverter for Negative Resistance (MINR) no 7V, 9.2JW, 33MHz Crystal Oscillator Clock and Frequency Generation 16:15-16:40 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 1.3-mW, 1.6-GHz Digital Delay-Locked Loop with Two-Cycle Locking Time and Dither-Free Tracking	T17-1 Univ. of California T17-2 IBM Semi conductor	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at Vog= 0.5 V) InAs/IncsdSac_AS Channel MOS/FETS Using MOCVD Source-Drain Regrowth 16:30-16:45 Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices	C11-1 imec C11-2 Texas Instruments C11-3 C11-3 C11-4 Purdue Univ C13: Linn C13-1 National Cniao Tung Univ. C13-2 KAIST	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitten Transmitter Circuit with Novel Faedback Source Follower Angiliter for Solar Powered 5-mm-Cubic Wireless Sensor Nodes with 1/20A Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VCO-PA-LNA-Switch-Modulator Co-Design for Low Power Insact- Based Wireless Sensor Networks are Regulators and DC-DC Converterss 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital Low Dropout Regulator in 40m CMOS with 77% Power Supply Rejection Improvement 16:40-17:05 High-Gaim Wide-Bandwidth Capacitor-Less Low- Dropout Regulator with Zon Insertion Utilizing Frequency Response of Inner Loops	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-6 Intel	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 21µW/MH2 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silicon-on-Thin-BOX (SOTB) 2Mb SRAM Down to 0.37 V Utilizing Adaptive Back Bias (SoTB) 2Mb SRAM Down to 0.37 V Utilizing Adaptive Back Bias 16:15-16:40 (Invited) Enhancing SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:05 Dual-Vc, BT-Bitcell SRAM Array in 22nm Tri-Gate Dmamic Voltate Range	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tung Unix. T16-1 GNC T16-2 Panasoni c	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Arouno Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence Of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire MOSFETs 15:10-15:35 Scaling of D-Gate SOI Nanowire N- and P-FET Down to 10m Gate Length: Size- and Orientation- Dependent Strain Effects 15:53-516:00 Performance of GAN Poly-Si Nanosheet (2mm) of channel of Junctionless Transistors with Ideal Subtreeshold Sige T16: Beyond CMOS 16:10-16:40 Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wrapped Gate Electrode Around Ultrathin Epitoxial Channel 16:40-17:05 Neural Network Based on a Three-Terminal Ferroelectric Memistor to Enable On-Chip Pattern Recognition
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2 Seoul National Univ C12-3	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720µW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 93% Fover Reduction by Automatic Self Power Gating (ASPG) and Multistage Inverter for Negative Resistance (MINR) no 7V.9 2µW, 33MHz Crystal Oscillator (Clock and Frequency Generation 16:15-16:40 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 1.3-mW, 1.6-GHz Digital Delay-Locked Loop with Two-Cycle Locking Time and Dither-Free Tracking 17:05-17:30 A 28818 RMS Jitter Versatile 8-12.4GHz Wide-	T17-1 Univ. of California T17-2 IBM Semi conductor T17-3 Respectso	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at Vos= 0.5 V) InAs/In _{6:30} ads. ₂₄ As Channel MS/FETs Using MOC/VD Source-Drain Regrowth 16:30-16:45 Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices 16:45-17:00 High-Voltage Complementary BEOL-FETs on Cu	C11-1 imec C11-2 Texas Instruments C11-3 C11-3 C11-4 Purdue Univ C13- Linn C13-1 National C13-2 KAIST C13-3 National	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitten Transmitter Circuit with Novel Faedback Source Follower Angilier for Solar Powerd 5-mm-Cubic Wireless Sensor Nodes with 1/20A Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VCO-PA-LNA-Switch-Modulator Co-Design for Low Power Insact- Based Wireless Sensor Networks are Regulators and DC-DC Converterss 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital Low Dropout Regulator in 40m CMOS with 77% Power Supply Rejection Improvement 16:40-17:05 High-Gaim Wide-Bandwidth Capacitor-Less Low- Dropout Regulator with 270 Insertion Utilizing Frequency Response of Inner Loops 17:05-17:30 A Paeud-Noise Coded Constant-Oft-Time (PNC-C0T)	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-6 Intel JJ2-7 National	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 21µW/MH2 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silcon-on-Thin-BOX (SOTB) 2Mb SRAM Down to 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mb SRAM Down to 0.37 V Utilizing Adaptive Back Bias (SoTB) 2Mb SRAM Down to 0.37 V Utilizing Adaptive Back Bias (SoTB) 2Mb SRAM Deviced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:05 Dual-Vc; 8T-Bitcell SRAM Array in 22nm Tri-Gate Dynamic Voltage Range 17:05-17:30	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tunç Univ. T16-1 GNC T16-2 Panasoni c T16-3	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence Of Low-Frequency Noise in 10m-Diameter Tri-Gate Nanowire MOSFETs 15:10-15:35 Scaling of D-Gate SOI Nanowire N- and P-FET Down to 10m Gate Length: Size- and Orientation- Dependent Strain Effects 19:35-16:00 Performance of GAA Poly-Si Nanosheet (2mn) Channel of Junctionises Transistors with Ideal Subtreshold Sige Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wrapped Gate Electrode Around Ultrathin Epitaxial Channel 16:40-17:05 Neural Network Based on a Three-Terminal Ferroelectric Memistor to Enable On-Chip Pattern Recognition 17:05-17:30
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2 Seoul National Univ C12-3 Broadcom	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720µW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 33% Power Reduction by Automatic Self Power Gating (ASPC) and Multistage Inverter for Negative Resistance (MINR) no 7V. 92µW, 33MHz Crystal Osciliator Clock and Frequency Generation 16:15-16:40 9 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 1.3-mW, 1.6-GHz Digital Delay-Locked Loop with Two-Cycle Locking Time and Dither-Free Tracking 17:05-17:30 A 28818 RMS Jitter Versatile 8-12.4GHz Wide- Band Fractional-N Synthesizer for SONET and SerDes	T17-1 Univ. of California T17-2 IBM Semi conductor T17-3 Renesas Electronics	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at Vos= 0.5 V) InAs/In _{6:30} ac ₀ As Channel MS/FETs Using MOC/D Source-Drain Regrowth 16:30-16:45 Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices 16:35-17:00 High-Voltage Complementary BEOL-FETs on Cu Interconnects Using N-type IG20 and P-type SnO Dual Oxide Semiconduct or Channels	C11-1 imec C11-2 Texas Instruments C11-3 C11-3 C11-4 Purdue Univ C13-1 National C13-1 National C13-2 KAIST C13-3 National Chiao Tung Univ.	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitten Transmitter Circuit with Novel Faedback Source Follower Angilier for Solar Powerd 5-mm-Cubic Wireless Sensor Nodes with 1/20A Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VCO-PA-LNA-Switch-Modulator Co-Design for Low Power Insact- Based Wireless Sensor Networks are Regulators and DC-DC Converters 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital Low Droput Regulator in 40m CMOS with 778 Royer Supply Rejection Improvement 16:40-17:05 High-Gaim Wide-Bandwidth Capacitor-Less Low- Droput Regulator with 20m Isterion Utilizing Frequency Response of Inner Loops 17:05-17:30 A Pasudo-Noise Codel Constant-Off-Time (PNC-C0T) Control Switching Converter with Maximum 18.7 dBm Peak Supr Reduction ad 92% Efficiency in 40 mm CMOS	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-5 AIST JJ2-6 Intel JJ2-7 National Nano Device Labs.	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2 1µW/MH2 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silcon-on-Thin-BOX (SOTB) 2Mb SRAM Down to 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mb SRAM Down to 0.37 V Utilizing Adaptive Back Bias (Break) 16:15-16:40 (Invited) Enhancing SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:05 Dual-Vc, BT-Bitcell SRAM Array in 22nm Tri-Gate CMOS for Energy-Efficient Operation across Wide Dynamic Voltage Range 17:05-17:30 A 10 nm Si-Based Bulk FinFETs 6T SRAM with Multiple Fin Heights Technology for 25% Better Static Noise Margin	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tunç Univ. T16-1 GNC T16-2 Panasoni c T16-3 Samsung	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10m-Diameter Tri-Gate Nanowire MoSFETs 15:10-15:35 Scaling of D-Gate SOI Nanowire N- and P-FET Down to 10m Gate Length: Size- and Orientation- Dependent Strain Effects 15:35-16:00 Performance of GAA Poly-Si Nanosheet (2mn) Channel of Junctionless Transistors with Ideal Subtrreshold Stope 16:15-16:40 Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wrapped Gate Electrode Around Ultrathin Epitaxial Channel 16:40-17:05 Neural Network Based on a Three-Terminal Ferroelectric Memistor to Enable On-Chip Pattern Recognition 17:05-17:30 Performance of Threshold Switching in Chalcogenide Glass for 3D Stackable Selector
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2 Seoul National Univ C12-3 Broadcom C12-4	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720µW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 93% Power Reduction by Automatic Self Power Galing (ASPC) and Multistage Investment for Negative Resistance (MINR) in 0.7V, 92µW, 38MHz Crystal Oscillator 16:15-16:40 9 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 1.3-mW, 1.6-GHz Digital Delay-Locked Loop with Two-Cycle Locking Time and Dither-Free Tracking 17:05-17:30 A 28818 RMS Jitter Versatile 8-12.4GHz Wide- Band Fractional-N Synthesizer for SONET and SerDes 17:30-17:55	T17-1 Univ. of California T17-2 IBM Semi conductor T17-3 Renesas Electronics	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at Vos= 0.5 V) InAs/In _{6:30} ac ₀ As Channel MOS/FETs Using MOC/D Source-Drain Regrowth 16:30-16:45 Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices 16:45-17:00 High-Voltage Complementary BEOL-FETs on Cu Interconnects Using N-type IG20 and P-type SnO Dual Oxide Semiconductor Channels	C11-1 imec C11-2 Texas Instruments C11-3 C11-3 C11-4 Purdue Univ C13-1 National Chiao Tung Univ. C13-2 KAIST C13-3 National Chiao Tung Univ.	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitten Transmitter Circuit with Novel Faedback Source Follower Angilier for Satz Powerd 5-mm-Cubic Wireless Sensor Nodes with 1/20A Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VOC-PA-LNA-Switch-Modulator Co-Design for Low Power Insact- Based Wireless Sensor Networks are Regulators and DC-DC Converterss 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital Low Dropout Regulator in 40m CMOS with 778 Rower Supply Rejection Improvement 16:40-17:05 High-Gaim Wide-Bandwidth Capacitor-Less Low- Dropout Regulator with 20m sterion Utilizing Frequency Response of Inner Loops 17:30-17:30 A Psaudo-Noise Codel Constant-Off-Time (PNC-C0T) Control Switching Converter with Maximum 18.7 dBm Peak Supr Reduction and 29:% Efficiency in 40 m CMOS 17:30-17:55	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-5 AIST JJ2-6 Intel JJ2-7 National Nano Device Labs.	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2.1µW/MH2 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silcon-on-Thin-BOX (SOTB) 2Mb SRAM Down to 0.37 V UltiZing Adaptive Back Bias (SOTB) 2Mb SRAM Down to 0.37 V UltiZing Adaptive Back Bias (Break) 16:15-16:40 (Invited) Enhancing SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:05 Dual-Vcg BT-Bitcell SRAM Array in 22nm Tri-Gate CMOS for Energy-Efficient Operation across Wide Dynamic Voltage Range 17:05-17:30 A 10 nm Si-Based Bulk FinFETs 6T SRAM with Multiple Fin Heights Technology for 25% Better Static Noise Margin 17:30-17:35	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tunç Univ. T16-1 GNC T16-2 Panasoni c T16-3 Samsung T16-4	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire MOSFETs 15:10-15:35 Scaling of D-Gate SOI Nanowire N- and P-FET Down to 10mm Gate Length: Size- and Orientation- Dependent Strain Effects 15:35:16:00 Performance of GAA Poly-Si Nanosheet (2mn) q Channel of Junctionless Transistors with Ideal Subthreshold Stope T16: Beyond CMOS 16:40-17:05 Neural Network Based on a Three-Terminal Ferrolectric Memistor to Enable On-Chip Pattern Recognition 17:05-17:30 Performance of Threshold Switching in Chalcogenide Glass for 3D Stackable Selector 17:30-17:55
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-4 STARC C12-1 Oregon State Univ. C12-2 Seoul National Univ C12-3 Broadcom C12-4 Univ. of	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720µW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 93% Power Reduction by Automatic Self Power Gating (A3PG) and Multisage Inverter for Negative Resistance (MINR) in 0.7V, 92µW, 30MHz Crystal Oscillator 16:15-16:40 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 1.3-mW, 1.6-GHz Digital Delay-Locked Loop with Two-Cycle Locking Time and Dither-Free Tracking 17:05-17:30 A 280FR SMS Jitter Versatile 8-12.4GHz Wide- Band Fractional-N Synthesizer for SONET and SerDes 17:30-17:55 A 13-mW, 049Uyby-Noise Sensitivity Tracking PLL for Improved Clock Data Compensation Featuring a Deep Trach Cancetor Based Loop Eifer	T17-1 Univ. of California T17-2 IBM Semi conductor T17-3 Renesas Electronics	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at Vos= 0.5 V) InAs/In _{6:30} ac ₀ As Channel MOS/FETs Using MOC/D Source-Drain Regrowth 16:30-16:45 Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices 16:45-17:00 High-Voltage Complementary BEOL-FETs on Cu Interconnects Using N-type IG20 and P-type SnO Dual Oxide Semiconductor Channels	C11-1 imec C11-2 Texas Instruments C11-3 NTT Nitrosystem Integration Lab C11-4 Purdue Univ C13-1 National Chiao Tung Univ. C13-2 KAIST C13-3 National Chiao Tung Univ. C13-4 Univ. of Florida	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Teamor Nodes with 1/20A Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VOC-PA-LNA-Switch-Modulator Co-Design for Low Power Insact- Based Wireless Sensor Nodes with 1/20A Dipole Antenna 15:35-16:00 A-90dBm Sensitivity Wireless Transceiver Using VOC-PA-LNA-Switch-Modulator Co-Design for Low Power Insact- Based Wireless Sensor Nodes with 1/20A Dipole Antenna 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital AO VSV Resistance-Locked Loop Embedded Digital AO VSV Resistance-Locked Loop Embedded Digital AO SV ResistanceAD SV Efficination AO AO SV SW ResistanceAD	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-5 AIST JJ2-6 Intel JJ2-7 National National Tsing Hua Linby	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2.1µW/MH2 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silcon-on-Thin-BOX (SOTB) 2Mb SRAM Down to 0.37 V Ultizing Adaptive Back Bias (SOTB) 2Mb SRAM Down to 0.37 V Ultizing Adaptive Back Bias (Boreak) 16:15-16:40 (Invited) Enhancing SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:05 Dual-Vc, BT-Bitcell SRAM Array in 22nm Tri-Gate CMOS for Energy-Efficient Operation across Wide Dynamic Voltage Range 17:05-17:30 A 10 nm Si-Based Bulk FinFETs 6T SRAM with Multiple Fin Heights Technology for 25% Better Static Noise Margin 17:30-17:35 A 210m V: 35M+z 8T SRAM with Dual Data-Aware With-Assists and Negative Read Wordline for High Calls Stability Speed and Aeaa-Efficiency	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tunç Univ. T16-1 GNC T16-2 Panasoni c T16-3 Samsung T16-4 LEAP	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire MOSFETs 15:10-15:35 Scaling of D-Gate SOI Nanowire N- and P-FET Down to 10mm Gate Length: Size- and Orientation- Dependence Trian Effects 15:35:16:00 Performance of GAN Polys-Nanosheet (2mn) g Channel of Junctionless Transistors with Ideal Suthrreshold Stope T16: Beyond CMOS 16:40-17:05 Neural Network Based on a Three-Terminal Ferreleatric Memistor to Enable On-Chip Pattern Recognition 17:05-17:30 Performance of Threshold Switching in Chalcogenide Glass for 3D Stackable Selector 17:30:17:55 Bidirectional TaO-Diode-Selected, Complementary Ajom Switch (DCAH Back
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2 Seoul National Univ C12-2 Seoul National Univ C12-3 Broadcom C12-4 Univ. of Minnesota	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720,W 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in gomm CMOS 15:35-16:00 30% Power Reduction by Automatic Self Power Gating (ASPG) and Multistage Inverter for Negative Resistance (MINR) in 0.7V, 9.2VW, 39MHz Crystal Occilitator Clock and Frequency Generation 16:15-16:40 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 1.3-mW, 1.6-GHz Digital Delay-Locked Loop with TWo-Cycle Locking Time and Dither-Free Tracking 17:05-17:30 A 288fs RMS Jitter Versatile 8-12.4GHz Wide- Band Fractional-N Synthesizer for SONET and SerDes 17:30-17:55	T17-1 Univ. of California T17-2 IBM Semi conductor T17-3 Renesas Electronics	T17: Late News Session 16:15-16:30 Record Extinsic Transconductance (2.45 mS/µm at Vos = 0.5*) (InAs/In _{6:45} As Channel MOSFETs Using MOCVD Source-Drain Regrowth 16:30-16:45 Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices 16:45-17:00 High-Voltage Complementary BEOL-FETs on Cu Interconnects Using N-type IGZO and P-type SnO Dual Oxide Semiconductor Channels	C11-1 imec C11-2 Texas Instruments C11-3 C11-4 C11-4 Purdue Univ C13-1 National Chiao Tung Univ. C13-2 KAIST C13-3 National Chiao Tung Univ. C13-4 Univ. of Florida C13-5	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Filter Comparison of the Comparison of	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-5 AIST JJ2-6 Intel JJ2-6 Intel JJ2-7 National Nano Device Las. JJ2-8 National Tsing Hua Univ. JJ2-9	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDSOI Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silcon-on-Thin-BOX (SOTB) 2Mb SRAM Down 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mb SRAM Down 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mb SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:05 Dual-Vc; 8T-Bitcell SRAM Array in 22nm Tri-Gate CMOS for Energy-Efficient Operation across Wide Dynamic Voltage Range 17:05-17:30 A 210m V: 3MHz 8T SRAM with Dual Data-Aware Write-Assists and Negative Read Wordline for High Cell- Stability, Speed and Area-Efficiency 17:55-18:20	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tunç Univ. T16-1 GNC T16-2 Panasoni c T16-3 Samsung T16-4 LEAP	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire MCSFETs 15:10-15:35 Scaling of Ω-Gate S01 Nanowire N- and D-FET Down to 10mm Gate Length: Size- and Orientation- Dependent Strain Effects 15:35:16:00 Performance of GAA Polys-Nanosheet (2mn) g Channel of Junctionless Transistors with Ideal Subthreshold Slope T16: Beyond CMOS 16:40-17:05 Neural Ultrathin Epitaxial Channel 16:40-17:05 Neural Network Based on a Three-Terminal Ferrolectric Memistor to Enable On-Chip Pattern Recognition 17:05-17:30 Performance of Threshold Switching in Chalcogenide Glass for 3D Stackable Selector 17:30-17:55 Bidirectional TaO-Dide-Selected, Complementary Atom Switch (DCAS) for Area-Efficient, Norvolatile Crossbar Switch Block Efficient, Norvolatile
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2 Seoul National Univ C12-3 Broadcom C12-4 Univ. of Minnesota	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720,JW 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 3% Power Reduction by Automatic Self Power Gating (ASPG) and Multistage Inverter for Negative Resistance (MINR) in 0.7V, 9.2JW, 39MHz Crystal Oscillator Clock and Frequency Generation 16:15-16:40 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 13-mW, 16-GHz Digital Delay-Locked Loop with Two-Cycle Locking Time and Dither-Free Tracking 17:05-17:30 A 288fs RMS Jitter Versatile 8-12.4GHz Wide- Band Fractional-N Synthesizer for SONET and SerDes 7.30-17:55	T17-1 Univ. of California T17-2 IBM Semi conductor T17-3 Renesas Electronics	T17: Late News Session 16:15-16:30 Record Extinsic Transconductance (2.45 mS/µm at Vos = 0.5 V) InAs/In _{6:45} As Channel MOSFETs Using MOCVD Source-Drain Regrowth 16:30-16:45 Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices 16:45-17:00 High-Voltage Complementary BEOL-FETs on Cu Interconnects Using N-type IGZO and P-type SnO Dual Oxide Semiconductor Channels	C11-1 imec C11-2 Texas Instruments C11-3 C11-4 Purdue Univ C13-Linu C13-1 National Chiao Tung Univ. C13-2 KAIST C13-3 National Chiao Tung Univ. C13-4 Univ. of Florida C13-5 Intel Corp.	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitten Transmitter Circuit with Novel Feedback Source Follower Angilier for Solar Powered 5-mm-Cubic Wireless Sensor Nodes with 1/20A Dipole Antenna 15:35-16:00 A-900Bm Sensithity Wireless Transceiver Using VOC-PA-LNA-Switch-Modulator Co-Design for Low Power Insact- Based Wireless Sensor Networks are Regulators and DC-DC Converters 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital Low Droput Regulator in Anom CMOS with 77% Power Supply Rejection Improvement 16:40-17:05 17:30-17:30 A Paeudo-Noise Coded Constant-0ff-Time (PNC-C0T) Control Switching Converter with Maximum 18:7 diam Peak Supr Reduction and 92% Efficiency of A on Michaeles 17:35-18:20 A 0.45-14 Fully Integrated Reconfigurable Switched Converter Win High	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-5 AIST JJ2-6 Intel JJ2-7 National National Tsing Hua Univ. JJ2-9 Intel	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2.1µW/MHz 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDS01 Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silcon-on-Thin-BOX (SOTB) 2Mbs SRAM Down 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mbs SRAM Down 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mbs SRAM Down 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mbs GRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:05 Dual-Vc; 8T-Bitcell SRAM Array in 22nm Tri-Gate CMOS for Energy-Efficient Operation across Wide Dynamic Voltage Range 17:05-17:30 A 10 nm Si-Based Bulk FinFETs 6T SRAM with Multiple Fin Heights Technology for 25% Better Static Noise Margin 17:30-17:55 A 210m 7:35Hz STAM with Dual Data-Aware Write-Assists and Negative Read Wordline for High Cell- Stability, Speed and Area-Efficiency 17:55-18:20 A 22nm 2.5MB Silice On-Die L3 Cache for the Nead Gaergener	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tung Univ. T16-1 GNC T16-2 Panasoni c T16-3 Samsung T16-4 LEAP	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire MOSFETs 15:10-15:35 Scaling of D-Gate SOI Nanowire N- and D-FET Down to 10mm Gate Length: Size- and Orientation- Dependence Of Skine Length: Size- and Orientation- Dependence Of Skine Stransistors with Ideal Subthreshold Skipe T16: Beyond CMOS 16:15-16:40 Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wrapped Gate Electrode Around Ultrathin Epitavial Channel 16:40-17:05 Neural Network Based on a Three-Terminal Ferroelectric Memistor to Enable On-Chip Pattern Recognition 17:05-17:30 Performance of Threshold Switching in Chalcogenide Glass for 3D Stackable Selector 17:30-17:55 Bidirectional TaO-Diode-Selected, Complementary Atom Switch (DCAS) for Area-Efficient, Norvolatile Crossbar Switch Block
14:20-16:00	KAIST C10-2 Stanford Univ C10-3 Keio Univ C10-4 STARC C12-1 Oregon State Univ. C12-2 Seoul National Univ C12-3 Broadcom C12-4 Univ. of Minnesota	14:20-14:45 A 9b, 1.12ps Resolution 2.5b/Stage Pipelined Time- to- Digital Converter in 65m CMOS Using Time- Register 14:45-15:10 A 0.11mm ² , 5.7-to-6.7GHz, Parametrically Pumped Quadrature LC-VCO with Digital Outputs 15:10-15:35 A 720;W 873MHz-1.008GHz Injection-Locked Frequency Multiplier with 0.3V Supply Voltage in 90mn CMOS 15:35-16:00 3% Power Reduction by Automatic Self Power Gating (ASPG) and Multistage Inverter for Negative Resistance (MINR) in 0.7V.9 J2W, 39MHz Crystal Oscillator Clock and Frequency Generation 16:15-16:40 A 2.5GHz 5.4mW 1-to-2048 Digital Clock Multiplier Using a Scrambling TDC 16:40-17:05 A 13-mW, 1.6-GHz Digital Delay-Locked Loop with Two-Cycle Locking Time and Dither-Free Tracking 17:05-17:30 A 232m, 0.9V Supply-Noise Sensitivity Tracking PLL for Improved Clock Data Compensation Featuring a Deep Trench Capacitor Based Loop Filter	T17-1 Univ. of California T17-2 IBM Semi conductor T17-3 Renesas Electronics	T17: Late News Session 16:15-16:30 Record Extrinsic Transconductance (2.45 mS/µm at Vos = 0.5 V) InAs/In _{6:40} Sa ₆₄ xAs Channel MCSFETs Using MOCVD Source-Drain Regrowth 18:30-16:45 Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices 16:45-17:00 High-Voltage Complementary BEOL-FETs on Cu Interconnects Using N-type IGZO and P-type SnO Dual Oxide Semiconductor Channels	C11-1 imec C11-2 Texas Instruments C11-3 NTT Microsystem Integration Lab C11-4 Purdue Univ C13-1 National Chiao Tung Univ. C13-2 KAIST C13-3 National Chiao Tung Univ. C13-4 Univ. df Schao Chiao Schao Univ. C13-5 Intel Corp.	C11: Low Power Wireless 14:20-14:45 A 0.9V Low-Power 0.4-6GHz Linear SDR Receiver in 28nm CMOS 14:45-15:10 An Ultra Low Power, Reconfigurable, Multi- Standard Transceiver Using Fully Digital PLL 15:10-15:35 Intermitten Transmitter Circuit with Novel Feedback Source Follower Angilier for Solar Powered 5-mm-Cubic Wireless Sensor Nodes with 1/20A Dipole Antenna 15:35-16:00 A -900Bm Sensithity Wireless Transceiver Using VoC-PA-LNA-Switch-Modulator Co-Design for Low Power Insect- Based Wireless Sensor Networks are Regulators and DC-DC Converters 16:15-16:40 A 0.6V Resistance-Locked Loop Embedded Digital Low Droput Regulator in 40nm CMOS with 77% Power Supply Rejection Improvement 16:40-17:05 High-Gain Wide-Bandwidth Capactor-Less Low- Droput Regulator with Zon Insertion Utilizing Frequency Response of Inner Loops 17:05-17:30 A 10V Fully-Integrated Bidirectional SC Ladder Converter in 0.13µm CMOS Using Nested- Boolstraped Switch Cells 17:55-18:20 A 0.45-1V Fully Integrated Reconfigurable Switched Capacitor Xierg Down DC-DC Converter With Maximum 18:7 diam Paek Spur Reduction and 29:& Efficiency of A 0.05 Using Nested- Boolstraped Switch Cells 17:55-18:20 A 0.45-1V Fully Integrated Reconfigurable Switched Capacitor Step-Dow DC-DC Converter With High Density MIM Capacitor 122m Tir-Gate CMOS	JJ2-1 IBM SRDC JJ2-2 Renesas Electronics JJ2-3 ST Micro- electronics JJ2-4 LEAP JJ2-5 AIST JJ2-5 AIST JJ2-6 Intel JJ2-7 National Sano Device JJ2-8 National Tsing Hua Univ. JJ2-9 Intel	JJFS2: SRAM 14:20-14:45 (Invited) Fully-Depleted Planar Technologies and Static RAM 14:45-15:10 A 20m 0.6V 2.1µW/MH2 128kb SRAM with No Half Select Issue by Interleave Wordline and Hierarchical Bitline Scheme 15:10-15:35 FDS01 Process/Design Full Solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs 15:35-16:00 Ultralow-Voltage Operation of Silcon-on-Thin-BOX (SOTB) 2Mb4 SRAM Down 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mb4 SRAM Down 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mb4 SRAM Down 0.37 V Utilizing Adaptive Back Bias (SOTB) 2Mb4 SRAM Down 0.37 V Utilizing Adaptive Back Bias (Break) 16:15-16:40 (Invited) Enhancing SRAM Performance by Advanced FinFET Device and Circuit Technology Collaboration for 14nm Node and Beyond 16:40-17:705 Dual-Vc; 8T-Bitcell SRAM Array in 22nm Tri-Gate CMOS for Energy-Efficient Operation across Wide Dynamic Voltage Range 17:05-17:30 A 10 nm Si-Based Bulk FinFETs 6T SRAM with Multiple Fin Heights Technology for 25% Better Static Noise Margin 17:30-17:55 A 210m 7.3MHz 8T SRAM with Dual Data-Aware Write-Assists and Negative Read Wordline for High Cell- Stability, Speed and Area-Efficiency 17:55-18:20 A 22nm 2.5MB Slice On-Die L3 Cache for the Next Generation Xeon [®] Processor	T15-1 ST Micro electronics T15-2 Toshiba T15-3 CEA, LETI T15-4 National Chiao-Tunç Univ. T16-1 GNC T16-2 Panasoni c T16-3 Samsung T16-4 LEAP	T15: Nanowire 14:20-14:45 Innovative Through-Si 3D Lithography for Ultimate Set-Aligned Planar Double-Gate and Gate-Ali-Around Nanowire Transistors 14:45-15:10 Systematic Understanding of Channel-Size Dependence of Low-Frequency Noise in 10mm- Diameter Tri-Gate Nanowire MCSFETs 15:10-15:35 Scaling of 0-Gate SOI Nanowire N- and P-FET Down to 10mm Gate Length: Size- and Orientation- Dependence Of Stain Effects 15:35:16:00 Performance of GAA Poly-Si Nanosheet (2mm) g Channel of Junctionless Transistors with Ideal Subthreshold Slope T16: Beyond CMOS 16:15-16:40 Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wrapped Gate Electrode Around Ultrathin Epitaxial Channel 16:40-17:05 Neural Network Based on a Three-Terminal Ferrolectrick Memistor to Enable On-Chip Pattern Recognition 17:05-17:30 Performance of Threshold Switching in Chalaceas for 3D Stackable Selector 17:30-17:55 Bidirectional TaO-Diode-Selected, Complementary Atom Switch Block

2013 Symposia on VLSI Technology and Circuits June 14th (Friday)

Time		Suzaku I		Suzaku II		Suzaku III	Shunju I	Shunju II
8:00-15:00				Circuits Registration				
		C14: Image Processing	C15	: All Digital Phase-Locked Loops	C16:	Embedded Non-Volatile Memory		
	C14-1	8:30-8:55	C15-1	8:30-8:55	C16-1	8:30-8:55 A MCU Platform with Embedded FRAM Achieving 350nA		
	The Univ. of Manchester	535GOPS/W 256x256 SIMD Processor Array	Broadcom	An 8.5 mW, 0.07 mm ⁻ ADPLL in 28 nm CMOS with Sub-ps Resolution TDC and < 230 fs RMS Jitter	Instruments	Current Consumption in Real-Time Clock Mode with Full State Retention and 6 Sus System Wakeup Time		
	C14-2	8:55-9:20	C15-2	8:55-9:20	C16-2	8:55-9:20		
	WALCE.	A 125,582 Vector/s Throughput and 95.1% Accuracy	Univ. of	A 12GHz 210fs 6mW Digital PLL with Sub-Sampling	ADESTO	A 0.6V 8 pJ/write Non-Volatile CBRAM Macro		
8:30-10:10	KAIST	ANN Searching Processor with Neuro-Fuzzy Vision Cache for Real-Time Object Recognition	Twente	Binary Phase Detector and Voltage-Time Modulated DCO	Technologies	Embedded in a Body Sensor Node for Ultra Low Energy Applications		
	C14-3	9:20-9:45	C15-3	9:20-9:45	C16-3	9:20-9:45		
	Univ. of	A 240x180 10mW 12us Latency Sparse-Output	Rambus	A 25GHz 100ns Lock Time Digital LC PLL with	Toshiba	A 38% Access Time Improvement in 40nm CMOS Technology with Triple-Wire-Program-Cell Scheme		
		Vision Sensor for Mobile Applications	C15 4	an 8-Phase Output Clock	C16-4	for High Density MROM		
	National	9.45-10.10 A 1062Mpixels/s 8192x4320p High Efficiency	IBM T. J.	9.45-10.10	010-4	A 28nm ROM with Two-Step Decoding Scheme and		
	Taiwan Univ.	Video Coding (H.265) Encoder Chip	Watson Research	A 28GHz Hybrid PLL in 32nm SOI CMOS	TSMC	OD-Space-Effect Minimization to Achieve 30% Speed and 190mV Vmin Improvement		
		C17: Sensors	C18:	Power Management Techniques	C19:	Clocking and Memory Interface		
	C17-1	10:30-10:55 A Fully Self-Rowered Hybrid System Based on	C18-1	10:30-10:55	C19-1	10:30-10:55 A 12Gb/s 0 92mW/Gb/s Epowarded Clock Receiver		
	Princeton Univ.	CMOS Ics and Large-Area Electronics for Large-	National Tsing Hua Univ.	An RF Energy Harvester with 35.7% PCE at P _{IN} of -15 dBm	KAIST	Based on ILO with 60MHz Jitter Tracking Bandwidth		
	C17-2	10:55-11:20	C18-2	10:55-11:20	C19-2	Variation Using Duty Cycle Adjuster in 65nm CMOS 10:55-11:20		
	Texas	A ±0.4°C Accurate High-Speed Remote Junction	Delft Univ.	A Self-Calibrating RF Energy Harvester	Fujitsu	An 8-to-16GHz 28nm CMOS Clock Distribution		
	Instruments	Series-Resistance Cancellation in 65nm CMOS	of Tech.	Generating 1V at -26.3 dBm	Labs.	Oscillators		
10.20 12.25	C17-3	11:20-11:45	C18-3	11:20-11:45	C19-3	11:20-11:45 A Sub-1 0V 20nm 5Gb/s/pin Post-I PDDP3 I/O		
10.30-12.33	KAIST	Readout IC Using Capacitor-Less Trans-Impedance	Univ. of	A Ripple Voltage Sensing MPPT Circuit for	Samsung	Interface with Low Voltage-Swing Terminated Logic		
		Amplifier and Coded Orthogonal Frequency-Division Multiple Sensing Scheme	Michigan	Ultra-Low Power Microsystems	J	and Adaptive Calibration Scheme for Mobile Application		
	C17-4	11:45-12:10	C18-4	11:45-12:10	C19-4	11:45-12:10		
	KAIST	Impedance and Noise-Shaped Body Channel	Hanyang Univ	Wireless Power Transceiver in 0.35-µm	Samsung	Minimized ZQ Calibration for 30nm 1.2V 4Gb		
	C17-5	Communication 12:10-12:35	C18-5	BCDMOS 12:10-12:35	C19-5	3.2Gb/s/pin DDR4 SDRAM 12:10-12:35		
	Columbia	Integrated CMOS Quantitative Polymerase	Texas	A Stackable, 6-Cell, Li-Ion, Battery Management IC for	Pombuc	A 400MHz - 1.6GHz Fast Lock, Jitter Filtering		
	Univ.	Chain Reaction Lab-on-Chip	Instruments	and Direct-Connect Current-Mode Communications	Rambus	ADDLL Based Burst Mode Memory Interface		
	C20-1	13:55-14:20	C21-1	13:55-14:20	C22-1	13:55-14:20		
	National	A Self-Powered CMOS Reconfigurable Multi-	IBM	A 35mW 8 b 8.8 GS/s SAR ADC with Low-Power	Texas A&M	A 10 Gb/s 2-IIR-Tap DFE Receiver with 35 dB		
	Taiwan Univ.	Sensor SoC for Biomedical Applications	Research	CAPACITIVE Reference Bullets in 32 nm Digital SOT CMOS	Univ.	Loss Compensation in 65-nm CMOS		
	C20-2	14:20-14:45	C21-2	14:20-14:45	C22-2	14:20-14:45		
	Princeton Univ	A Low-Power Microprocessor for Data-Driven Analysis of Analytically-Intractable Physiological	Broadcom	A 13-Bit 9GS/s RF DAC-Based Broadband Transmitter in 28nm CMOS	Texas A&M Univ.	A 6b 10GS/s TI-SAR ADC with Embedded 2- Tap FFE/1- Tap DFE in 65nm CMOS		
	C20-3	14:45-15:10	C21-3	14:45-15:10	C22-3	14:45-15:10		
13:55-16:00	National	A 48.6-to-105.2µW Machine-Learning Assisted	Carnegie	An 8.5mW 5GS/s 6b Flash ADC with Dynamic		A 2.8 mW/Gb/s Quad-Channel 8.5-11.4 Gb/s		
	Chiao Tung Univ.	Cardiac Sensor SoC for Mobile Healthcare Monitoring	Mellon Univ.	Offset Calibration in 32nm CMOS SOI	Broadcomp	Quasi-Digital Transceiver in 28 nm CMOS		
	C20-4	15:10-15:35	C21-4	15:10-15:35	C22-4	15:10-15:35		
	Chung Cheng Univ.	A 0.36V, 33.3µW 18-Band ANSI S1.11 1/3-Octave Filter Bank for Digital Hearing Aids in 40nm CMOS	Keio Univ.	A 0.0058mm ² 7.0 ENOB 24MS/s 1/tJ/conv. Threshold Configuring SAR ADC with Source Voltage Shifting and Interpolation Technique	Oregon State Univ.	A 5Gb/s 2.6mW/Gb/s Reference-Less Half-Rate PRPLL-Based Digital CDR		
	C20-5	15:35-16:00	C21-5	15:35-16:00	C22-5	15:35-16:00		
	National	A 401GFlops/W 16-Cores Signal Reconstruction Platform with a 4G Entries/s Matrix Generation		A 2.1 mW 11b 410 MS/s Dynamic Pipelined SAR	Oregon	A Fast Power-On 2 2Gb/s Burst-Mode Digital		
	Taiwan Univ.	Engine for Compressed Sensing and Sparse	imec	ADC with Background Calibration in 28nm Digital CMOS	State Univ.	CDR with Programmable Input Jitter Filtering		
		C23: Embedded Processing	C24:	Millimeter Wave Transceivers and				
	C23-1	16:15-16:40	C24-1	16:15-16:40				
	ETH Zurich	A 1Gbps LTE-Advanced Turbo-Decoder ASIC in 65nm CMOS	National Taiwan Univ.	A Fully-Integrated 77GHz Phase-Array Radar System with 1TX/4RX Frontend and Digital Beamforming Technique				
	C23-2	16:40-17:05	C24-2	16:40-17:05				
	Waseda	A 1.59Gpixel/s Motion Estimation Processor with - 211-to- 211 Search Range for UHDTV Video	Hong Kong Univ. of Sci.	A 4-Element 60-GHz CMOS Phased-Array Receiver with Transformer-Based Hybrid-Mode Mixing and				
16:15-17:55	C23-2	Encoder	&Tech.	Closed- Loop Beam-Forming Calibration				
	NTT	A 96.5% Energy-Reduced Lookup Engine with an	-	17.05-17.30				
	Microsystem Integration	Unused-Rules-Exception Scheme for Greening	l'exas Instruments	160GHz Pulsed Transmitter with Packaged Antenna Array in 65nm CMOS				
	Labs.	17:30-17:55	C24-4	17:30-17:55				
	Univ. of	Shortstop: An On-Chip Fast Supply Boosting	Univ. of	A Low-Power 60-GHz CMOS Transceiver for				
	Michigan	Technique	California	WiGig Applications				